Periodic solutions for nonlinear Volterra integrodifferential equations in Banach spaces
نویسندگان
چکیده
In this paper we examine periodic integrodifferential equations in Banach spaces. When the cone is regular, we prove two existence theorems for the extremal solutions in the order interval determined by an upper and a lower solution. Both theorems use only the order structure of the problem and no compactness condition is assumed. In the last section we ask the cone to be only normal but we impose a compactness condition using the ball measure of noncompactness. We obtain the extremal solutions for both the Cauchy and periodic problems in a constructive way, using a monotone iterative technique.
منابع مشابه
Controllability of semilinear functional integrodifferential systems in Banach spaces
Controllability of nonlinear systems represented by ordinary differential equations in infinite-dimensional spaces has been extensively studied by several authors. Naito [12,13] has studied the controllability of semilinear systems whereas Yamamoto and Park [19] discussed the same problem for parabolic equation with uniformly bounded nonlinear term. Chukwu and Lenhart [3] have studied the contr...
متن کاملUlam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations
In the present research paper we derive results about existence and uniqueness of solutions and Ulam--Hyers and Rassias stabilities of nonlinear Volterra--Fredholm delay integrodifferential equations. Pachpatte's inequality and Picard operator theory are the main tools that are used to obtain our main results. We concluded this work with applications of ob...
متن کاملFractional Order Semilinear Volterra Integrodifferential Equations in Banach Spaces
In this paper, sufficient conditions are established for the existence results of fractional order semilinear Volterra integrodifferential equations in Banach spaces. The results are obtained by using the theory of fractional cosine families and fractional powers of operators.
متن کاملPeriodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملNonlinear functional integrodifferential evolution equations with nonlocal conditions in Banach spaces
In this paper, the Leray-Schauder Alternative is used to investigate the existence of mild solutions to first-order nonlinear functional integrodifferential evolution equations with nonlocal conditions in Banach spaces. AMS subject classifications: 34K30, 34A60, 34G20
متن کامل